
Chapter 3

Line and Surface Integrals

3.1 Parametric Curves

We will use bold letter x = (x1, x2, · · · , xn) to denote a point (or a vector) in Rn. When
n = 2 and 3, we also write x = (x, y) = xi + yj where i = (1, 0), j = (0, 1), and
x = (x, y, z) = xi+yj+ zk, where i = (1, 0, 0), j = (0, 1, 0),k = (0, 0, 1), respectively. The
norm or length of a vector x is given by

|x| =
√
x21 + x22 + · · ·+ x2n.

A parametric curve is a continuous map from an interval to Rn, n ≥ 1. Although
the interval could be arbitrary, we will take it to be [a, b] for definiteness. Let r(t) =
(x1(t), · · · , xn(t)), t ∈ [a, b], be a parametric curve. We also let x(t), γ(t), or c(t) to denote
a parametric curve. For a space curve, the vector notation: x(t) = x(t)i+ y(t)j+ z(t)k is
often used. When the context is clear, we drop the adjective parametric. The independent
variable is usually taken to be t, z, etc.

It is best to imagine a parametric curve as the trajectory of a particle, where |r′(t)|
stands for its speed at time t. Indeed, the average speed of the particle in the time
duration [t, t+ ∆t] is given by

|r(t+ ∆t)− r(t)|
∆t

.

By the mean value theorem, xj(t + ∆t) − xj(t) = x′j(t
∗)∆t for some mean value t∗ ∈

[t, t+ ∆t]. Hence

r(t+ ∆t)− r(t) = (x′1(t
∗
1), x

′
2(t
∗
2), · · · , x′n(t∗n))∆t, t∗j ∈ [t, t+ ∆t] ,

and
|r(t+ ∆t)− r(t)|

∆t
=
√
x

′2
1 (t∗1) + x

′2
2 (t∗2) + · · ·+ x′2

n (t∗n)→ |r′(t)| ,

1
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as ∆t→ 0.

There are some common definitions for a parametric curves.

• It is a C1-curve if every xi = xi(t), i = 1, · · · , n, is continuously differentiable on
[a, b];

• It is regular if it is a C1-curve and |r′| > 0 on [a, b]. Here |r′| =
√
x

′2
1 + · · ·+ x′2

n ;

• It is a closed curve if r(a) = r(b);

• It is a simple curve if it is one-to-one on [a, b). (The point b is excluded because
r(b) = r(a) for a closed curve.)

• A piecewise C1- (resp. regular) curve consists of finitely many C1 (resp. regular)
regular curves rj on [aj, bj], j = 1, · · · , n, that satisfies rj(bj) = rj+1(aj+1, j =
1, · · · , n − 1. It allows r to be non-differentiable at the endpoints of the intervals
(although one-sided derivatives exist there).

The constant map r(t) = x0 is a parametric curve which degenerates into a point. It
satisfies r′ = 0. The condition |r′| > 0 ensures r really looks like a curve. The parametric
curves studied in this course are all piecewise regular curves.

Example 3.1. Straight lines. A general parametric form of a straight line is given by

r(t) = a + d t ,d 6= 0, t ∈ (−∞,∞) ,

where a and d are given points in Rn. The straight line passing two different points a
and b is given by

r(t) = a + (b− a)t , t ∈ (−∞,∞),

so that r(0) = a and r(1) = b. From |r′(t)| = |b− a| we see that this parametrization is
regular.

Example 3.2. The circle of radius r centered at the origin is given by

γ1(θ) = (r cos θ, r sin θ) = r cos θi + r sin θj, θ ∈ [0, 2π].

When θ increases from 0 to 2π, a particle starting at (1, 0) travels around the circle once
in the anticlockwise way.

On the other hand, the parametric curve

γ2(θ) = (r sin θ,−r cos θ) , θ ∈ [0, 2π] ,

goes around the circle in the clockwise way.
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One may also consider γ3(θ) = (r cos 2θ, r sin 2θ) , θ ∈ [0, 2π], which, though the image
is the same circle, goes around it twice as θ runs from 0 to 2π.

All these curves are regular.

Example 3.3. We know that the graph of the equation y = ax2 + bx + c represents a
parabola. A convenient parametrization is given by

r(x) = (x, ax2 + bx+ c) = xi + (ax2 + bx+ c)j , x ∈ (−∞,∞) .

In general, whenever a function y = f(x), x ∈ I , where I is some interval is given, the
expression

r(x) = (x, f(x)) = xi + f(x)j , x ∈ I ,

gives a parametrization of the graph of f as a parametric curve in the plane.

Example 3.4. The helix is a space curve given by

h(t) = r cos ti + r sin tj + tk , t ∈ (−∞,∞) .

From |h′| =
√
r2 + 1 we see that the helix is always regular. Whether the curve is regular

or not depends on the choice of the parametrization. For instance, if now we consider

γ(t) = r cos t2i + r sin t2j + t2k , t ∈ (−∞,∞) ,

whose image is identical to the image of h, from |γ′| = 2t
√
r2 + 1 we see that it is not

regular at t = 0. One may say this is not a good parametrization.

3.2 Line Integrals of Functions

Now we define the integral of a function on a parametric curve.

Let r be a C1 parametric curve in Rn, n ≥ 1 defined on [a, b] and f a continuous
function defined on C, the image of [a, b] under r. We would like to introduce a concept
of integration of f over r. The guiding principle is that it should give the total mass of
the curve when regarded as a very thin object in space with density f .

A partition P, a = t0 < t1 < · · · < tn = b on [a, b] introduces points pj = r(tj) on the
curve. We may use the polygonal lines connecting pj and pj+1 to approximate the curve.
In particular, the mass of C is given approximately by∑

j

f(qj)|pj+1 − pj| =
∑
j

f(r(t∗j))|r(tj+1)− r(tj)| ,
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where qj = r(t∗j) is a tag point. By applying the mean value theorem, xi(tj+1)− xi(tj) =
x′i(t

∗
j)∆tj for some t∗j ∈ [tj, tj+1]. Hence,∑

j

f(qj)|r(tj+1)−r(tj)| =
∑
j

f(qj)|
√
x

′2
1 (t∗j1) + x

′2
2 (t∗j2) + · · ·+ x′2

n (t∗jn) ∆tj, t∗ji ∈ [tj, tj+1] .

Letting ‖P‖ → 0, we see that

∑
j

f(qj)|pj+1 − pj| →
ˆ b

a

f(r(t))
√
x

′2
1 + · · ·+ x′2

n (t) dt .

This consideration leads us to the following definition. Let C be a C1 parametric curve
in Rn. For a continuous function f defined on C, its line integral along C is defined to be

ˆ
C

f ds ≡
ˆ b

a

f(r(t))|r′|(t) dt . (3.1)

When r maps bijectively onto its image and f is positive and, this integral gives the total
mass of the image of this parametric curve with density f . Taking f ≡ 1,

|C| ≡
ˆ b

a

|r′|(t) dt , (3.2)

yields the length of the image of this parametric curve.

We have seen that one may alter the way of parametrization while keeping the image
unchanged. Let γ1 be a regular parametric curve on [a, b]. Another regular parametric
curve γ2 on [c, d] is called a reparametrization of γ1 if there is a C1 bijection ϕ from [a, b]
to [c, d] such that γ1(t) = γ2(ϕ(t)) . Applying the chain rule to this relation, γ′1(t) =
γ′2(ϕ(t))ϕ′(t), which implies |γ1(t)| = |γ′2(ϕ(t))||ϕ′(t)|. Since both curves are regular, we
see that ϕ′ never vanishes, hence either ϕ′ > 0 or ϕ′ < 0. For instance, let γ1(t) =
(cos t, sin t) t ∈ [0, π] and γ2(z) = (z,

√
1− z2), z ∈ [−1, 1]. γ2 is a reparametrization of

γ1 and they are related by z = ϕ(t) = cos t. Here ϕ′(t) = − sin t < 0 on [0, π].

Given two regular curves γi, i = 1, 2, which map bijectively onto the same image
C ⊂ Rn. Clearly we can find a bijective map ϕ satisfying the relation γ1(t) = γ2(ϕ(t)).
One can show that ϕ is also C1 so that indeed γ2 is a reparametrization of γ1.

When we talk about the length or the mass of a curve, certainly we mean it to be a
quantity which depends only on its form in the ambient space. In other words, no matter
which parametrization you choose to perform the calculation, the end result should be
the same. This is the content of the following theorem.

Theorem 3.1. The line integral (3.1) is independent of reparametrization.
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More precisely, let r1 and r2 be two regular curves on [a, b] and [c, d] respectively
sharing the same image. Then

ˆ b

a

f(r1(t))|r′1(t)| dt =

ˆ d

c

f(r2(t))|r′2(t)| dt .

Proof. Let ϕ be the C1-map that relates the two curves. We have r1(t) = r2(ϕ(t)) , t ∈
[a, b]. Since ϕ maps [a, b] onto [c, d] bijectively and ϕ′ never vanishes, either ϕ′ > 0 or
ϕ′ < 0 on [a, b]. In the first case, ϕ(a) = c and ϕ(b) = d. From r1(t) = r2(ϕ(t)), we have
r1(t) = r2(ϕ(t))ϕ′(t). Therefore, by change of variables,

ˆ d

c

f(r2(z)|r′2(z)| dz =

ˆ b

a

f(r2(ϕ(t))
|r′1(t)|
|ϕ′(t)|

ϕ′(t) dt

=

ˆ b

a

f(r1(t))|r′1(t)| dt .

In case ϕ(a) = d and ϕ(b) = c, ϕ′ < 0. We have

ˆ d

c

f(r2(z)|r′2(z)| dz =

ˆ a

b

f(r2(ϕ(t))
|r′1(t)|
|ϕ′(t)|

ϕ′(t) dt

=

ˆ b

a

f(r1(t))|r′1(t)| dt .

The definition is readily extended to any piecewise regular curve C using the decom-
position C = C1 + · · ·+ Cn where Cj’s are regular:

ˆ
C

f ds =
∑
j

ˆ
Cj

f ds . (3.3)

Formula (3.1) takes a special form when the curve is the graph of a function. Consider
the plane curve C = {(x, ϕ(x)) : x ∈ [a, b]} where ϕ is continuous. In the trivial

parametrization r : x 7→ (x, ϕ(x)). From r′ = (1, ϕ′(x)) and |r′| =
√

1 + ϕ′2, (3.1)
becomes ˆ

C

f ds =

ˆ b

a

f(x, ϕ(x))
√

1 + ϕ′2(x) dx . (3.4)

Example 3.5. Evaluate ˆ
C

(x− 3y2 + z) ds ,

where C is the line segment connecting the origin to (1, 1, 1) given by t(1, 1, 1), t ∈ [0, 1].
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Clearly, r(t) = (t, t, t) imples |r′(t)| =
√

3 . Therefore,

ˆ
C

(x− 3y2 + z) ds =

ˆ 1

0

(t− 3t2 + t)
√

3 dt = 0 .

Example 3.6. Consider the following two line segments C1 and C2 given respectively by
r1 = ti + tj, t ∈ [0, 1] and r2(t) = i + j + tk , t ∈ [0, 1]. Here r1(1) = r2(0), so they form
a piecewise regular curve C. Evaluate

ˆ
C

(x− 3y2 + z) ds .

Well, it just has to do things separately.

ˆ
C1

(x− 3y2 + z) ds =

ˆ 1

0

(t− 3t2 + 0)
√

2 dt = −
√

2

2
.

ˆ
C2

(x− 3y2 + z) ds =

ˆ 1

0

(1− 3 + t)× 1 dt = −3

2
.

So ˆ
C

(x− 3y2 + z) ds = −
√

2

2
− 3

2
.

There are numerous ways to parametrize a curve. One may ask: Among all these
possible parametrization, is there an optimal one? The following theorem suggests an
answer to this question.

Theorem 3.2. Each regular curve in Rn admits a parametrization r satisfying |r′| ≡ 1.

This special parametrization is called the parametrization by arc-length. It represents
a particle running along the curve in unit speed. An arc-length parametrization is unique
among all parametrization of the same orientation.

Proof. Pick a regular parametrization r of the given curve C. That is, r is a regular
parametrization which maps some [a, b] bijectively onto C. Define

S(t) =

ˆ t

a

|r′(z)| dz , t ∈ [a, b] .

Since |r′| > 0, as t runs from a to b, S runs from 0 to L, the length of C. Let ψ be the
inverse map of S : [0, L]→ [a, b] . Let

γ(s) = r(ψ(s)) , s ∈ [0, L] .
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Then γ maps [0, L] bijectively onto C, and

γ′(s) = r′(ψ(s))ψ′(s)

= r′(t)
1

|S ′(ψ(s))|

=
r′(t)

|r′(t)|
, t = ψ(s) .

Hence |γ′(s)| = 1 on [0, L].

3.3 Geometric Curves

What is a (geometric) curve? A set C in Rn is called a C1-(resp. regular) curve if it
is the bijective image of a C1- (resp. regular) parametric curve. (When the curve is
closed, it is allowed that the endpoints of the interval being mapped to the same.) Such
parametric curve is called a C1-(resp. regular) parametrization of the curve C. A curve
admits many different parametrization. Let r1 be such a regular parametrization on [a, b]
and r2 be another on [c, d]. From the definition of regular parametrization, there is a
bijective C1-map ϕ so that r2(z) = r2(ϕ(z)) for z ∈ [c, d], and the following alternative
holds: Either

(a) ϕ(a) = ϕ(c), ϕ(b) = ϕ(d) and ϕ′ > 0 on [a, b] , or

(b) ϕ(a) = ϕ(d), ϕ(b) = ϕ(c) and ϕ′ < 0 on [a, b] .

Proposition 3.1 which asserts the line integral (3.1) is independent of reparametrization
shows that (3.1) is a property of the curve, that is, a subset in the ambient space rather
than its parametrization.

Example 3.7. Find the mass of the arc in the shape of a half disk y2 + z2 = 1, z ≥ 0 in
R3 with density 2− z.

We have freedom to pick a parametrization to perform the line integral. Let us take
γ(t) = (cos t, sin t, 0), t ∈ [0, π]. Then γ′(t) = (− sin t, cos t, 0), |γ′(t)| = 1, soˆ

C

(2− z) ds =

ˆ π

0

(2− sin t) dt = 2π − 2 .

If we choose another parametrization, say, let r(y) = yj+
√

1− y2k, y ∈ [−1, 1] . We

have r′(y) =
√

1/(1− y2), so
ˆ
C

(2− z) ds =

ˆ 1

−1
(2−

√
1− y2) 1√

1− y2
dy = 2π − 2 ,

same as above.
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From the above discussion, all regular reparametrizations of a curve can be put into two
groups according to their “orientation”. An oriented curve is a curve with a chosen orien-
tation, that is, a choice of preferred parametrization. Let r1 and r2 be two parametrization
of an oriented curve C and let ϕ be the C1-map such that r2(z) = r1(ϕ(z)). By the chain
rule, r′2(z) = r′1(t)ϕ

′(z) where t = ϕ(z). As ϕ′ is positive, the unit vector r′1/|r′1| = r′1/|r′1|
which is tangential to the curve C is independent of parametrization of the same orienta-
tion. It is called the unit tangent of the curve at the point r1(t) and will be denoted by
t. When the orientation of the parametrization is reversed, the unit tangent changes to
−t since now ϕ′ is negative.

Example 3.8. Determine the unit tangent of the unit circle at the point (
√

3/2, 1/2).

First, we choose a parametrization of the circle. The handiest one is

r(θ) = cos θi + sin θj, θ ∈ [0, π] ,

where r(π/6) = (
√

3/2, 1/2). We have

t(
√

3/2, 1/2) =
r′

|r′|

=
− sin θi + cos θj

1

= (−1/2,
√

3/2) .

Alternatively, one may use the parametrization

γ(t) = (−t,
√

1− t2), t ∈ [−1, 1] ,

where γ(−
√

3/2) = (
√

3/2, 1/2) .We have γ′(t) = (−1,−t/
√

1− t2) and |γ′(t)| = 1/
√

1− t2.
Therefore,

t(
√

3/2, 1/2) =
γ′(−
√

3/2)

|γ′(−
√

3/2)|
= (−1/2,

√
3/2) ,

which is the same as above.

The same consideration can be extended to all piecewise regular curves.

Oriented curves are relevant when we integrate a vector field along a curve in the next
section.

Finally, we point out there are two operations on curves we will encounter. First, for
an oriented curve C we use −C to denote the oriented curve obtained by reversing the
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orientation of C. More precisely, let r : [a, b] → C be a regular parametrization of the
curve C. The parametric curve r1(t) = r(a+ b− t) becomes a regular parametrization of
C in reverse orientation.

Second, let C1 be a oriented curve parametrized by r1 on [a, b] and C2 be another
oriented curve parametrized by r2 on [c, d]. In case r1(b) = r2(c), we can put these two
curves together to form a new curve C1 + C2. It is again a piecewise regular curve when
both C1 and C2 are piecewise regular. In fact, let r1 be on [a, b] and r2 on [c, d]. The curve
r(t) = r1(t), t ∈ [a, b] and r(t) = r2(t+ c− b)), t ∈ [b, b+ d− c] is a parametrization of r
on [a, b+ d− c].

3.4 Vector Fields

Vector fields are usually defined in open sets in Rn. It is necessary to define an open set
first.

An open set is a set consisting of interior points or a set without boundary points. A
formal definition is that S is open if for every x ∈ S, there is a ball containing x which is
completely contained in S. The ball {x ∈ Rn : |x| < 1} is an open set. In general, the
regions we performed integration in the previous two chapters consist of interior points
and boundary points. Without counting the boundary points, that is, the interior of a
region, forms an open set.

Let S be a subset of Rn. A vector field F(x) = (F1(x), · · · , Fn(x)) in S is an assignment
of an n-tuple of function to each point x ∈ S . It is a continuous vector field if all
components Fi’s are continuous in S. A vector field F defined in an open set S is called
a C1-vector field if all components Fj’s are C1-functions in S. Note that since Fj is well-
defined in all nearby points around a specific point in S, one is able to form difference
quotients and hence partial derivatives, and that is the reason we need the set to be open.

The definition of a vector field which is just putting some functions together looks
rather trivial. In fact, it becomes meaningful when one considers it on a surface or a man-
ifold (a generalized surface). It is required further that the vector field lies on the tangent
space of the manifold. Many laws of physics are described by differential equations and
differential equations are completely determined by its associated vector field. Hence the
study of vector fields on manifolds is essentially equal to the study of differential equations
on the manifolds.

Example 3.8. Consider the vector field

F =
1

|x|
(x1, x2, · · · , xn) .

This expression is well-defined, and in fact, infinitely many times differentiable away from
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the origin. Hence its natural domain of definition is the open set R2 \ {0}. The direc-
tion of this vector field at the point x is x/|x| and its magnitude is always equal to 1.
Any vector field of the form f(|x|)x is called a radial vector field. F is a radial vector field.

Example 3.9. Let

R(x, y) = −yi + xj .

This is a smooth vector field in the entire plane. A vector field is smooth is all its com-
ponents are infinitely differentiable functions. Since R(x, y) · (x, y) = 0, this vector field
is perpendicular to its position at every point. It is a rotating vector field.

Example 3.10. The notion of a vector field is originated from physics. The presentation
of a point mass (say the Sun) generates a force field in space. At the center the force
becomes infinity, hence the vector field is only defined in the entire space minus the center
(the location of the point mass). Any point mass (say the Earth) would be attracted to
the center by a gravitational force. According to Newton’s law, the gravitational force is
a field given by

G(x) = −GMm

|x|3
x ,

where M,m are respectively the masses of the Sun and the Earth, and G is the gravita-
tional constant. The magnitude of the force is

|G(x)| = GMm

r2
,

where r = |x| is the distance between the Earth and the Sun. The direction of force is
−x/r, that is, it is attracting toward the Sun.

Example 3.11. The gravitational force of the Earth exerting on objects on its surface
may be approximated by

V = (0, 0,−g) = −gk ,

where g is the gravitational constant. This is a constant vector field.

3.5 Line Integral Of Vector Fields

In this section we show how to integrate a vector field along a curve.

The background comes from physics. Suppose an object is moved from Point a to Point
b under the influence of a constant force field F. Its work done by the force field is given by
F·(b−a). Now we would like to calculate the work done of a non-constant force field along
a parametric curve r : [a, b] → Rn. Let P be a partition t0 = a < t1 < · · · < tn = b on
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[a, b] and pj = r(tj). We approximate the curve by polygonal lines formed by connecting
the points pj’s. The work done moving from pj to pj+1 being F(pj) · (pj+1 − pj) where
pj is taken to be a tag point. When the partition is very fine, the force field is almost a
constant near pj. Therefore, a good approximation to the work done along the curve is
given by ∑

j

F(pj) · (pj+1 − pj) =
∑
j

F(pj) ·
pj+1 − pj

∆tj
∆tj.

As the term

pj+1 − pj
∆tj

=
r(tj+1)− r(tj)

∆tj
→ r′

= t|r′|

as ‖P‖ → 0 where t is the unit tangent of the parametric curve, the work done by F
along the curve r is and should be defined to be

ˆ b

a

F(r(t)) · r′(t) dt ,

or ˆ b

a

F(r(t)) · t|r′(t)| dt .

Let G be a nonempty open set in Rn and C an oriented C1-parametric curve in G.
For a continuous vector field F in G, one defines the line integral of the vector field F
along C to be ˆ

C

F · dr ≡
ˆ
C

F · t ds , (3.5)

where t is the unit tangent of C. From this definition one readily sees that the line integral
of a vector field is independent of reparametrization of the same orientation, but changes
to a negative sign when the orientation is reversed.

Using F = (F1, · · · , Fn) and t = r′/|r′|, we have

ˆ
C

F · dr =

ˆ b

a

(F1(r(t))x
′
1(t) + · · ·+ Fn(r(t))x′n(t)) dt , (3.6)

where r is a parametrization of C on [a, b].

When n = 2, a vector field is usually written as F = (M,N) or M i +N j. Then (3.6)
is the same as ˆ

C

F · dr =

ˆ b

a

(M(r(t))x′(t) +N(r(t))y′(t)) dt ,
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where r : [a, b] → C is a parametrization of C and r(t) = (x(t), y(t)). In view of this
formula, we also use ˆ

C

M dx+N dy

to denote the line integral of the vector field F.

Similarly, when n = 3, we let F = (M,N,P ) or M i + N j + Pk, and express the line
integral of F as ˆ

C

M dx+N dy + P dz .

When a parametrization r is given,

ˆ
C

M dx+N dy + P dz =

ˆ b

a

(M(r(t))x′(t) +N(r(t))y′(t) + P (r(t))z′(t)) dt .

Example 3.12. Find the work done of the vector field F = (y−x2)i+(z−y2)j+(x−z2)k
along the curve r(t) = ti + t2j + t3k , t ∈ [0, 1], from (0, 0, 0) to (1, 1, 1).

We have
dr

dt
= i + 2tj + 3t2k ,

F(r(t)) = (t2 − t2)i + (t3 − t4)j + (t− t6)k ,

and

F(r(t)) · dr
dt

= 2t4 − 2t5 + 3t3 − 3t8 .

Therefore, ˆ
C

F · dr =

ˆ 1

0

(2t4 − 2t5 + 3t3 − 3t8) dt =
29

60
.

There are other physical interpretation of the line integral (3.5) other than work done.
Let C be an oriented curve which admits a regular parametrization r on [a, b]. The term
F(r) · t is the projection of F onto the tangential direction of C at the point r(t). Image
now instead of a force field, F is the velocity of some flow (fluid or gas whatsoever). The
integral on the right hand side of (3.5) becomes the amount of the flow along the curve.
When the curve is a closed one, it is called the circulation of the flow around the curve.
And the notation is ˛

C

F · dr .

Example 3.13. Find the flow of the velocity field V = xi + zj + yk along the curve

γ(θ) = cos θi + sin θj + θk, θ ∈ [0, π/2] .
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We have
dγ

dθ
= − sin θi + cos θj + k ,

and
V(γ(t)) = cos θi + θj + sin θk .

Therefore, the flow through the curve isˆ π/2

0

V(γ(θ)) · dγ
dθ

dθ =

ˆ π/2

0

(− sin θ cos θ + t cos θ + sin θ) dθ

=
π

2
− 1

2

There is another interpretation of the line integral (3.5) when n = 2. Let t =
(x′(t), y′(t))/|r′| be the unit tangent of the oriented curve at the point (x(t), y(t)). The
unit vector n = (y′(t),−x′(t))/|r′| is a vector field along the curve. From n · t =
y′(t)x′(t) − x′(t)y′(t) = 0 we see that n is perpendicular to t. It is called the (unit)
normal vector field along the curve. When the curve is a closed one and t is in the
anticlockwise direction, it is easy to see that n points outward, so it is the unit outward
normal. For a vector field F defined in some open set containing the closed curve C
oriented in the anticlockwise direction, the amount of F flowing across the boundary at r
in unit time is given by F · n. Consequently, the integralˆ

C

F · n ds

gives the flux of F across the curve C.

When F = M i +N j, the flux is given byˆ
C

F · n ds =

ˆ b

a

F(r(t)) · n(r(t)) dt =

ˆ b

a

(M(r(t))y′(t)−N(r(t))x′(t)) dt ,

which is the line integral of −N i + M j along C. Hence, the flux is also given by the
formula ˆ

C

F · n ds =

ˆ
C

M dy −N dx . (3.7)

Example 3.14. Find the flux of F = (x− y)i + xj across the circle x2 + y2 = 1.

We choose the standard parametrization for the unit circle: r(t) = cos ti + sin tj , t ∈
[0, 2π]. Then r′ = − sin ti + cos tj and n = cos ti + sin tj . The flux is given byˆ

C

M dy −N dx =

ˆ 2π

0

((cos t− sin t) cos t+ cos t sin t) dt

=

ˆ 2π

0

cos2 t dt

= π .
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Summarizing, the line integral of a vector field is

• When F is a force field, the line integral of F along a curve C beginning at point A
and ending at B gives the work done of the force on a particle (or person) moving
from A to B.

• When F is the velocity of some fluid, the line integral of F along a closed curve C is
called the circulation of the fluid around C. It measures the amount of fluid going
around the curve in unit time.

• When n = 2 and F is the velocity of some fluid, the line integralˆ
C

Qdx− P dy =

ˆ
C

F · n ds ,

gives the flux of the fluid across the curve C, where n is the preferred unit normal
of C. When C is a closed curve oriented in the anticlockwise way, the unit normal
points outward.

3.6 Independence of Path

A main theme on the line integral of a vector field is independence of path. To formulate
it let us consider a vector field F in an open, connected subset G in Rn. A set is connected
if two points inside can be connected by a continuous curve lying inside this set. When the
set is open, one may always approximate a curve inside this set by a regular curve inside
the set. The vector field F is called independent of path if for any two points A,B ∈ G,
the line integral ˆ

C

F · dr ,

gives the same value as long as C is a piecewise regular parametric curve running from A
to B inside G. Again it suffices to take C to be a regular parametric curve, since we can
approximate a piecewise regular parametric curve by regular parametric curves which are
formed by smoothing out the junctions of the given curve.

A vector field F is called a conservative vector field or a gradient vector field if it
is the gradient of some function. In other words, it is conservative if there exists some
differentiable Φ in G such that F = ∇Φ. The function Φ is called a potential of F. The
potential (function) is essentially unique; in a connected set, two potential functions differ
by a constant.

The following vector fields are conservative.

• The constant vector field F = (a1, · · · , an) whose potential is Φ(x) = a1x1 + · · · +
anxn. For instance, the gravity on the surface of the earth is (0, 0,−g) where g is
the gravitational constant.
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• The gravitational force between two objects is given by

G(x, y, z) = −GmM
r3

r , r = |r| =
√
x2 + y2 + z2 .

Its potential is given by

Φ(x, y, z) =
GmM

r
.

Theorem 3.3. Let F be a continuous vector field in a connected, open set G in Rn. The
following statements are equivalent:

(a) F is independent of path;

(b) For any closed curve C in G, ˛
C

F · dr = 0 ,

(c) F is conservative.

Proof. (a) ⇒ (b). Let C be a closed piecewise regular curve in G. Mark any two points
A and B on the curve and express the curve as C = C1 − C2 where both C1 and C2 run
from A to B. By (a)

ˆ
C

F · dr =

ˆ
C1−C2

F · dr

=

ˆ
C1

F · dr−
ˆ
C2

F · dr

= 0 .

(b)⇒ (a). Reverse the above argument.

(a) ⇒ (c). Fix a point O in G. Let A(x) be any point in G and connect O to A
be a piecewise regular parametric curve C inside G. Note that here we have used the
assumption that G is connected, otherwise we cannot always connected two points by a
path. Define a function Φ by

Φ(x) =

ˆ
C

F · dr .

Since the vector field is independent of path, Φ(x) is independent of the choice of C. We
claim that ∇Φ = F in G. For, we connect x to the point (x1 + h, x2, · · · , xn)(h is small)
by the curve Ch : t 7→ x + hte1, t ∈ [0, 1]. Then C + Ch becomes a curve from O to
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(x1 + h, x2, · · · , xn). We have

Φ(x + he1)− Φ(x)

h

=
1

h

(ˆ
C+Ch

F · dr−
ˆ
C

F · dr
)

=
1

h

(ˆ
C

F · dr +

ˆ
Ch

F · dr−
ˆ
C

F · dr
)

=
1

h

ˆ
Ch

F · dr

=
1

h

ˆ 1

0

F(x + hte1) · (h, 0 · · · , 0) dt

=

ˆ 1

0

F1(x1 + ht, x2, · · · , xn) dt

→ F1(x) ,

as h→ 0. Hence ∂Φ/∂x1 = F1. Similarly, one can show ∂Φ/∂xj = Fj for j = 2, · · · , n.

(c)⇒ (a). Let Φ be the potential for F. Let C be a regular curve running from points A
to B whose parametrization is given by r on [a, b] such that r(a) = A and r(b) = B. We
have

ˆ
C

F · dr =

ˆ b

a

∑
j

Fj(r(t))x
′
j(t) dt

=

ˆ b

a

∑
j

∂Φ

∂xj
(x1(t), · · · , xn(t))x′j(t) dt

=

ˆ b

a

d

dt
Φ(x1(t), · · · , xn(t)) dt

= Φ(x1(t), · · · , xn(t))
∣∣∣b
a

= Φ(B)− Φ(A) ,

which shows that the path integral is independent of the choice of path. Since we can
approximate each piecewise regular curve by regular curves (simply by smoothing out
the junctions), the vector field is also independent of the path formed by any piecewise
regular curve.

Remark. By the definition of connectedness, it is possible to connect two points in the set
under consideration by a path (that is, a continuous curve). However, it is rather obvious
that this path can be chosen as a simple, regular curve. Using this fact, one can construct
the potential function for the vector field only involving simple, regular curves. With a
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potential function available, the line integral of the vector field along any closed curve
(not necessarily simple) vanishes. Therefore, in order a vector field to be conservative, it
suffices to show it is independent of all simple regular curves.

From a practical point of view, one would like to find ways to determine whether a
given vector field is conservative, and if yes, how to recover its potential.

The answer for this question starts with a necessary condition. Assume that F is
conservative and ∇Φ = F. We have

Fj =
∂Φ

∂xj
, i = 1, · · · , n .

Taking partial derivative in xk,

∂Fj
∂xk

=
∂2Φ

∂xj∂xk
.

By switching j and k,

∂Fk
∂xj

=
∂2Φ

∂xk∂xj
.

However, Φjk = Φkj. We arrive at

∂Fj
∂xk

=
∂Fk
∂xj

. (3.8)

This condition does not involves the potential function. (3.8), called a compatibility con-
dition, must be satisfied when the vector field F is conservative. In the following we show
that it is also sufficient as long as the vector field is defined everywhere.

Theorem 3.4. Let F be a C1-vector field in Rn. It is conservative if and only if (3.8)
holds.

Proof. We have shown that (3.8) is necessary for F to be a conservative vector field. To
establish the converse, we claim the function Φ given by

Φ(x) =

ˆ 1

0

F(tx) · x dt ,
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is a potential for F. For,

∂Φ

∂xj
(x) =

∂

∂xj

ˆ 1

0

∑
k

Fk(tx)xk dt

=

ˆ 1

0

∑
k

∂Fk
∂xj

(x)txk + Fj(tx) dt

=

ˆ 1

0

∑
k

∂Fj
∂xk

(x)txk + Fj(tx) dt

=

ˆ 1

0

d

dt
tFj(tx1, · · · , txn) dt

= Fj(x) ,

after using (3.8) in the third line, done.

When n = 2 and F = M i +N j, the compatibility condition (3.8) becomes

∂M

∂y
=
∂N

∂x
. (3.9)

When n = 3 and F = M i +N j + Pk, the compatibility condition (3.8) becomes

∂M

∂y
=
∂N

∂x
,

∂M

∂z
=
∂P

∂x
,

∂N

∂z
=
∂P

∂y
. (3.10)

Example 3.15. Find the potential function (if exists) for the vector field

F = (ex cos y + yz)i + (xz − ex sin y)j + (xy + z)k .

We verify the existence of potential using Theorem 3.4,

∂N

∂x
= −ex sin y + z =

∂M

∂y
,

∂P

∂y
= x =

∂N

∂z
,

and
∂M

∂z
= y =

∂P

∂x
.

It follows that the vector field is conservative.

To find the potential, we solve the equations

∂Φ

∂x
= ex cos y + yz ,
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to get Φ(x, y, z) = ex cos y + xyz + g(y, z) , where g is to be determined. Next, we use

∂Φ

∂y
= xz − ex sin y = −ex sin y + xz +

∂g

∂y
,

which implies ∂g/∂y = 0, that is, g(y, z) = h(z) for some function h only depends on z.
Finally, from

∂Φ

∂z
= xy + z = xy +

dh

dz
,

we conclude h(z) = z2/2 + C where C is an arbitrary constant. The potential for the
vector field is given by

Φ(x, y, z) = ex cos y + xyz +
z2

2
+ C .

It is remarkable that the compatibility condition (3.8) may not be sufficient when the
vector field is not defined in the entire space. Let us look at a remarkable example.

Consider the vector field

R(x, y) =
−y

x2 + y2
i +

x

x2 + y2
j

which is C1 in the plane except at the origin. Hence the vector field is defined only in the
set R2 \ {(0, 0)} which is open and connected. We compute

∂M

∂y
=

−1

x2 + y2
+

2y2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
,

∂N

∂x
=

1

x2 + y2
+

−2x2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
.

We see that (3.9) holds. However, consider the circle C : [0, 2π] → R2 given by θ 7→
(cos θ, sin θ). We have

˛
C

M dx+N dy =

ˆ 2π

0

M(r(θ))x′(θ) +N(r(θ))y′(t) dθ

=

ˆ 2π

0

(− sin θ)(− sin θ) + cos θ cos θ dθ

= 2π.

According to Theorem 3.3 , R is not conservative.
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3.7 Surfaces in Space

The treatment of surfaces is essentially parallel to that of curves.

A parametric surface is a continuous map from a region in R2 to R3. Although it
is okay to study surfaces in Rn, our main concern is surfaces in space. To this end we
only consider n = 3. For definiteness we take the region to be R = [a, b]× [c, d]. In fact,
most results continue to hold when R is replaced by a plane region. A parametric surface
r : R → R3, r(u, v) = (x(u, v), y(u, v), z(u, v)), is C1- (resp. regular) if all components
of r are C1 (resp. C1- and ru and rv are linearly independent everywhere). Using a
property of the cross product of 3-vectors, the last condition is equivalent to ru× rv 6= 0.
Geometrically the two vectors ru and rv span the tangent plane of the surface at r. It
is most suitable to visualize them as vectors pointing out from r, the position vector
of the surface. The linear independence of the two tangent vectors ensures that the
image of r cannot degenerate into curves or even points, hence looks like a piece of
surface. For instance, the non-regular C1-parametric surface r(u, v) = (u, u, 0) has image
being the straight line given by t → (t, t, 0) in space. The image of the constant map
r(u, v) = (a, b, c), where ru = rv = 0, degenerates into a single point.

A (geometric) surface is the image of a C1-parametric surface r from a region D to R3

which is one-to-one and regular when restricted to the interior of D. Such parametrization
will be handily called an admissible parametrization of the surface S.

Very often the term surface is used for either parametric surfaces or geometric surfaces.
One needs to distinguish it from context.

A surface could be given in the form of the graph of a function with two variables.
Let ϕ be a C1-function in some region D ∈ R2. The map (x, y) 7→ (x, y, ϕ(x, y)) gives
rise to the surface

S = {(x, y, ϕ(x, y)) : (x, y) ∈ D}.

Here rx = (1, 0, ϕx) and ry = (0, 1, ϕy), so rx × ry = (−ϕx,−ϕy, 1) which is always non-
zero, hence r is an admissible parametrization of S.

Example 3.16. The sphere centered at the origin and with radius a. First of all, a
parametrization is given by (as inspired by the polar coordinates)

r : (ϕ, θ)→ (a sinϕ cos θ, a sinϕ sin θ, a cosϕ) , ϕ ∈ [0, π], θ ∈ [0, 2π] .

The parametrization is one-to-one on the interior of its region, that is, (0, π) × (0, 2π).
It maps {0} × [0, 2π] to the north point (0, 0, a) and {π} × [0, 2π] to the south point
(0, 0,−a). Also it maps the points (ϕ, 0) and (ϕ, 2π) to the same point. Then

rϕ × rθ = (a2 sin2 ϕ cos θ,−a2 sin2 ϕ sin θ, a2 cosϕ sinϕ) ,

which is equal to 0 if and only if ϕ = 0, π. It follows that r is an admissible parametrization
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of the sphere in (0, π) × [0, 2π). It is regular away the north pole (0, 0, a) and the south
pole (0, 0,−a).

This sphere can also be described as the union of two graphs of functions, namely, S+

and S− given respectively by

S+ = {(x, y,
√
a2 − x2 − y2) : x2 + y2 < a2} ,

and
S− = {(x, y,−

√
a2 − x2 − y2) : x2 + y2 < a2} .

Example 3.17. The cylinder parallel to the z-axis is given by the parametrization

r(θ, z) = (r cos θ, r sin θ, z), (θ, z) ∈ [0, 2π)× (−∞,∞) .

As
rθ = (−r cos θ, r sin θ, 0) , rz = (0, 0, 1) ,

rθ × rz = (r cos θ, r sin θ, 0),

which is never equal to 0, the cylinder is a regular surface. Since the cylinder is perpendic-
ular to the xy-plane, its projection on this plane is not a region. It cannot be represented
as graphs over the xy-plane. On the other hand, one may project it to the yz-plane to
express it as the union of two graphs, but obviously this is not a good way.

Example 3.18. Equation for a circular cone is given by z = (x2 + y2)1/2. It is already
in graphic form. The standard parametrization

r(x, y) = (x, y,
√
x2 + y2) , (x, y) ∈ R2,

is regular except at the origin, where
√
x2 + y2 is not differentiable.

One may use polar coordinates to get another parametrization of the circular cone

s(r, θ) = (r cos θ, r sin θ, r) , (r, θ) ∈ R× [0, 2π) ,

which is regular except at r = 0.

A class of surfaces commonly encountered is surfaces of revolution.

Let (x(t), z(t)), x(t) > 0, be a regular curve in the xz-plane parametrized by some t
and x > 0. Rotate it around the z-axis to get a surface S. The surface can be described
by adding a parameter α:

S : (α, t) 7→ (x(t) cosα, x(t) sinα, z(t)) .
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Now
∂r

∂α
= (−x sinα, x cosα, 0),

∂r

∂t
= (x′ cosα, x′ sinα, z′) .

When z′ 6= 0, these two vectors are linearly independent. When z′ = 0, x′ 6= 0 since
(xt(t), z(t)) is regular. Therefore, the determinant of (−x sinα, x cosα) and (x′ cosα, x sinα)
is equal to xx′ which is non-zero. It shows that as long as (x(t), z(t)) is a regular curve,
the set obtained by rotation this curve around the z-axis yields a surface.

When a plane curve is given in the explicit form y = f(x) , the surface of revolution
it produces is given in the form

z = f(r) , r =
√
x2 + y2 .

Example 3.19. Let us examine the torus, which is obtained by rotating a circle staying
away from the origin. Let

(x(θ), z(θ)) = (b+ a cos θ, a sin θ), 0 < a < b .

This describes the circle centers at (b, 0) with radius a. Since a < b, the circle does not
touch the z-axis. The torus is given by the parametrization

(α, θ) 7→ ((b+ a cos θ) cosα, (b+ a cos θ) sinα, a sin θ) .

We have
∂r

∂α
= (−(b+ a cos θ) sinα, (b+ a cos θ) cosα, 0) ,

∂r

∂θ
= (−a sin θ cosα,−a sin θ sinα, a cos θ),

and

∂r

∂α
× ∂r

∂θ
= (a(b+ cos θ) cos θ cosα, a(b+ a cos θ) cos θ sinα, a(b+ a cos θ) sin θ) .

So ∣∣∣ ∂r
∂α
× ∂r

∂θ

∣∣∣ = a(b+ a cos θ) > 0 .

We confirm that the torus is a surface regular everywhere.

The equation of the torus can be found as follows. Starting with (x−b)2 +z2−a2 = 0,
we replace x by r to get (r − b)2 + z2 = a2. In other words,√

x2 + y2 =
√
a2 − z2 + b,

x2 + y2 = a2 − z2 + 2b
√
a2 − z2 + b2 ,

and finally we arrive at the implicit form of the torus

(x2 + y2 + z2 − a2 − b2)2 = 4b(a2 − z2) .
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3.8 Surface Area

In this section we derive the surface area formula for a surface. Let r : D → R3 be an
admissible parametrization of a surface S from a plane region D. Let P = {Dij} be
a partition on D which is taken to be a rectangle for simplicity. The parametrization
introduces a “generalized partition” on S whose “subrectangles” are denoted by Sij. Fix
a typical subrectangle S ′ with vertices at (u, v), (u+h, v), (u, v+k), (u+h, v+k), Its image
under the parametrization has vertices at r(u, v), r(u + h, v), r(u, v + k), r(u + h, v + k).
By Taylor’s expansion theorem,

r(u+ h, v) = r(u, v) + ru(u, v)h+Q1h
2 ,

r(u, v + k) = r(u, v) + rv(u, v)k +Q2k
2 ,

r(u+ h, v + k) = r(u, v) + ru(u, v)h+ rv(u, v)k +Q3(h
2 + hk + k2) ,

where Qj, j = 1, 2, 3 are some bounded quantities. (Note that we have assumed r is
C2 for simplicity. When r is only in C1-class, it is a bit messy but the arguments are
essential the same.) The “higher terms” Q1h

2, Q2k
2 and Q3(h

2 + hk + k2) are very
small compared to the first order terms, and consequently can be ignored. (Note that
we have assumed r is C2 for simplicity. When r is only in C1-class, it is a bit messy
but the arguments are essential the same.) Let P be the parallelogram with vertices at
r(u, v) + ru(u, v)h, r + rv(u, v)k, r(u, v) + ru(u, v)h + rv(u, v)k. We use the area of P to
approximate the area of S ′. Using a property of the cross product, the area of P is given
by the absolute value of ru(u, v)h× rv(u, v)k = ru × rvhk.

Replacing (u, v) by (ui, vj) and (h, k) by (∆ui,∆vj), the surface area of S is approxi-
mately given by ∑

i,j

|ru × rv|(ui, vj)∆ui∆vj ,

which is a Riemann sum on D. Letting ‖P‖ → 0, the Riemann sum tends to the limit¨
D

|ru × rv|(u, v) dA(u, v) .

In view of this, for an admissible parametrization r : D → R3 of the surface S, we
define its surface area to be

|S| =
¨
D

|ru × rv|(u, v) dA(u, v) . (3.11)

From the derivation above we see that the surface area is independent of the choice of the
parametrization.

When the surface is given by the graph of a function ϕ(x, y) where (x, y) belongs to a
region D, we have |rx × ry| = (1 + ϕ2

x + ϕ2
y)

1/2, so the surface area becomes

|S| =
ˆ
D

√
1 + ϕ2

x + ϕ2
y dA(x, y) . (3.12)
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Introducing the notation

|∇ϕ| =
√
ϕ2
x + ϕ2

y ,

we have

|S| =
ˆ
D

√
1 + |∇ϕ|2 dA(x, y) .

For a surface of revolution obtained from revolving a curve (x(t), z(t)), t ∈ [a, b], the
formula for its surface area is

|S| =
ˆ 2π

0

ˆ b

a

x(t)
√
x′2(t) + z′2(t) dt . (3.13)

To see this, let (α, t) 7→ (x(t) cosα, x(t) sinα, z(t)) , be the parametrization of the surface.
Then

rα = (−x sinα, x cos θ, 0) , rt = (x′ cosα, x′ sinα, z′) ,

and

|rα × rt| = x
√
x′2 + z′2 ,

and the formula follows.

Let us examine the surface area of the sphere. We will do it in three different ways.
First, the polar coordinates gives a parametrization of the sphere of radius a;

r : (ϕ, θ) 7→ (a sinϕ cos θ, a sinϕ sin θ, a cosϕ) .

This map is bijective from (0, π)× [0, 2π) to the sphere but missing the north and south
pole. As missing two points does not affect the surface area, the area formula (3.11) above
still works. We have

|ru × rv| = a sinϕ .

Therefore, the surface area of the sphere of radius a is equal to

ˆ 2π

0

ˆ π

0

a2 sinϕdϕdθ = 4πa2 .

Next, the sphere can be described as the union of two graphs one of which is ϕ(x, y) =√
a2 − x2 − y2 and the other is −

√
a2 − x2 − y2 over the disk Da. By symmetry, it suffices

to calculate the surface area of the upper half sphere. As 1 + |∇ϕ|2 = a2/(a2 − x2 − y2),
by (3.12) the surface area of the sphere is

2

¨
Da

a√
a2 − x2 − y2

dA = 2a

ˆ 2π

0

ˆ a

0

1√
a2 − r2

r drdθ

= 4πa2 .
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Finally, the sphere can be viewed as the surface of revolution by rotation the curve
θ 7→ (a cos θ, a sin θ), θ ∈ (−π/2, π/2) around the y-axis. By (3.13), since x2θ + y2θ = a2,
the surface area is given by

ˆ 2π

0

ˆ π/2

−π/2
a cos θ × a dt = 4πa2 .

Example 3.20. Let S be the surface obtained by rotating the curve x = cos z, z ∈
[−π/2, π/2]. Find its surface area.

The curve in the xz-plane is given by (cos z, z), z ∈ [−π/2, π/2]. By (3.13), the surface
area of S is given by

|S| =

ˆ 2π

0

ˆ π/2

−π/2
cos z

√
1 + sin2 z dzdα

=

ˆ 2π

0

ˆ 1

−1

√
1 + w2 dwdα

= 2

ˆ 2π

0

ˆ 1

0

√
1 + w2 dwdα

= 2π(
√

2 + log(1 +
√

2)) .

3.9 Surface Integrals

Now for a continuous function f defined on the surface S, it is natural to define its
integration to be ¨

S

f dσ ≡
¨
D

f(r(u, v))|ru × rv| dA(u, v) , (3.14)

where r : D → S is an admissible parametrization of S. From the associated Riemann
sums one is convinced that this definition is independent of the choice of parametrization.

When the parametrization is given by a graph: (x, y) → (x, y, ϕ(x, y)), the surface
integral becomes ¨

D

f dσ =

¨
D

f(x, y, ϕ(x, y))
√

1 + |∇ϕ|2 dA(x, y) .

Recall that when C is a curve with density f , the line integral

|C| =
ˆ
C

f ds

gives the mass of the curve. Likewise, When f is non-negative, this surface integral gives
the mass of an object occupying S with density f .
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Example 3.21. Find the mass of S described in Example 3.20 with density δ(x, y, z) =√
1− x2 − y2.

Well,

δ(r(α, z)) =
√

1− cos2 α cos2 z − sin2 α cos2 z = | sin z| .
(Caution:

√
1− cos2 z = | sin z|, not sin z in general.) And

dσ = |rα × rz| = cos z
√

1 + sin2 z dαdz .

(Caution: here cos z ≥ 0 in [−π/2, π/2]) Therefore,

¨
S

f dσ =

ˆ 2π

0

ˆ π/2

−π/2
| sin z| cos z

√
1 + sin2 z dαdz

= 2

ˆ 2π

0

ˆ π/2

0

sin z cos z
√

1 + sin2 z dαdz

= 2π

ˆ 2

1

√
w dw, (w = 1 + sin2 z)

=
4π

3
(2
√

2− 1) .

Next we consider the integration of a vector field on a surface. Recall that in the case
of curves, we need to do so for an oriented curve. So, first of all, what is an oriented
surface?

Just like a parametrization of a curve automatically gives an orientation to a curve,
the same thing is true for surfaces. Take an admissible parametrization of a surface S.
The vector ru × rv is a non-zero vector which may be viewed as a vector pointing out at
r(u, v). The property of cross product shows that it is perpendicular to both ru and rv.
The unit vector

n =
ru × rv
|ru × rv|

is called the unit normal of the surface at r. Just like the unit tangent t determines
an orientation for a curve, the choice of a continuous unit normal also determines an
orientation of the surface. Obviously, there are two choices of continuous unit normal for
a given surface. It is even more evident when the surface is a closed one, either the normal
vector field points outward or inward.

We note that whenever r : [a, b] × [c, d] → S gives an admissible parametrization of
S, the parametrization s : [c, d] × [a, b] → S given by s(v, u) = r(u, v), which satisfies
su × sv = rv × ru = −ru × rv gives the opposite orientation of S.

Let F be a continuous vector field on the surface S. Assume that S is oriented with
the choice of the continuous unit normal n. The dot product F ·n becomes a function on
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S. It is natural to define the integration of the vector field on the surface by

¨
S

F · dS ≡
¨
S

F · n dσ . (3.15)

Using the relations

dσ = |ru × rv| dA

and

n =
ru × rv
|ru × rv|

,

the surface integral of a vector field becomes

¨
S

F · dS =

¨
D

F · (ru × rv) dA . (3.16)

This is the most common formula for the evaluation of the integral. When the surface
is the graph of ϕ(x, y) over D, r = (x, y, ϕ(x, y)) and rx × ry = (−ϕx,−ϕy, 1), so (3.15)
becomes ¨

S

F · dS =

¨
D

F(x, y, ϕ(x, y)) · (−ϕx,−ϕy, 1) dA(x, y) . (3.17)

The integral (3.15) is called the flux of the vector field F across the oriented surface
S. The physical meaning is quite obvious. View F as the velocity (vector field) of some
fluid in space. Consider the way it passes a closed surface S where the chosen normal n
is outward pointing. The flow flows out if F · n is positive and flows in if it is negative.
In a unit time, the amount of flow flows out of a small piece of surface area is equal to
F · n dσ, hence the amount of flow flowing out of S in unit time is given by (3.15). It is
the analog of the two dimensional situation discussed in 3.5.

Example 3.22. Determine the flux of F = yzj+ z2k outward through the surface S cut
from the cylinder y2 + z2 = 1, z ≥ 0, by the planes x = 0 and x = 1.

The surface is the graph of the function ϕ(x, y) =
√

1− y2 whose parametrization is

r(x, y) = (x, y,
√

1− y2) .

Hence rx = i, ry = j− y/
√

1− y2k and

rx × ry = y/
√

1− y2j + k.

Then on S,

F · rx × ry = (y
√

1− y2j + (1− y2)k)(y/
√

1− y2j + k) = 1 .
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The projection of S onto the xy-plane is the rectangleR with vertices at (0,−1), (1,−1), (1, 1)
and (0, 1). By (3.15) or (3.16), the flux is equal to

¨
S

F · dS =

¨
R

F · rx × ry dA(x, y)

=

ˆ 1

0

ˆ 1

−1
dxdy

= 2 .

Just like in the case of curves, surface integration of a function is independent of
parametrization and orientation (the choice of a continuous unit normal vector field). On
the other hand, surface integration of a vector field is independent of parametrization but
dependent on the orientation. When we change the orientation by choosing −n instead
of n as the unit normal, the integral changes by a minus sign.

So far, we have been concerned with those surfaces which allows admissible parametriza-
tion. Such surfaces are endowed with an orientation determined by its unit normal vector
field. One may ask, are there some surfaces which are not orientable? That is, a surface
which admits no continuous normal vector field. To make things more precisely, here a
surface is understood in an intuitive manner, and not orientable meaning there is no way
to find an admissible parametrization for the surface.

It turns that there are such surfaces. A famous example is the Möbius band. You
may look up this simple but peculiar surface in Wiki. Here we are only concerned with
oriented surfaces.


